CLOUDCOM 2010

A Novel Approach for Cooperative Overlay-Maintenance in Multi-Overlay Environments

Chin-Jung Hsu, CS, National Tsing Hua University, Taiwan Wu-Chun Chung, CS, National Tsing Hua University, Taiwan Kuan-Chou Lai, CIS, National Taichung University, Taiwan Kuan-Ching Li, CSIE, Providence University, Taiwan Yeh-Ching Chung, CS, National Tsing Hua University, Taiwan

Outline

- Introduction
- Related Work
- ■Cooperative Strategy
 - ■CFD failure detection
 - CNPE network-proximity estimation
- Experimental Results
- Conclusions

Introduction

- Overlay NetworkA virtual network overlay another layer
 - Chord, Gnutella, Super-Peer model, etc.

Internet Visualization

Example: Ring-based overlay

More and more applications

- Overlay-based applications are growing
 - P2P file sharing gnutella, eDonkey, BitTorrent, etc.
 - P2P Steaming PPStream, PPLive, Joost, etc.
 - Resource Discovery Mercury, MAAN, etc.
 - Cloud computing Cassandra, Hadoop, etc.

Multiple overlays co-habit the Internet

A multi-overlay environment (MOE)

{name: "mongo", type:"DB"}

Each overlay network may serve an application

Motivation

- Overlay network introduces maintenance cost
 - failure detection
 - latency/bandwidth measurement
 - routing table adjustment
 - adaptive approach
 - ... etc.
- $n * Cost = large \rightarrow how to reduce?$
 - Some of these overlay-maintenance costs are redundant

Related Work

- [2007][ICDCS] Build One, Get One Free: Leveraging the Coexistence of Multiple P2P Overlay Networks
 - Sharing information to reduce maintenance cost
 - Focus on two specific overlays
- [2009][DAIS] Exploiting Synergies between Coexisting Overlays
 - A comprehensive consideration on the reduction of maintenance costs
 - Lack of the consideration of intersection ratio

Intersection Ratio

➤ the percentage of nodes which locates in both overlays

Objective

Multi-overlay environments

Reduce the total maintenance cost

Propose a general approach

Consider a realistic MOE environment.

Cooperative Strategy

- To reduce the maintenance costs
- The total cost could be smaller

Master-Slave Model

- One overlay is selected to be the master
- The master overlay could help reduce the common maintenance operations

Master-Slave Model

 Two kinds of inter-overlay protocols to support two types of overlay maintenance

Inter-Overlay Protocols

- Subscribe/Notify protocol
 - periodical maintenance
 - E.g. failure detection
 - periodically checks the status of neighbor nodes to ensure the routing mechanism
- Query/Response protocol
 - → state sharing
 - E.g. network-proximity estimation
 - share the information of network state to make the decision of routing path

Cooperative Failure Detection (CFD)

master slave probe probe

Elimination

Cooperative Failure Detection (CFD)

Cooperation

CFD – Subscription Process

CFD – Notification Process

Cooperative Network-Proximity Estimation (CNPE)

Elimination

Cooperative Network-Proximity Estimation (CNPE)

CNPE – Query/Response Process I

CNPE – Query/Response Process II

Experimental Environment

- PeerSim simulator
- Cycle-based simulation engine
- Unstructured, Ring, Tree Overlays
- Parameter K: neighbor numbers
- Comparison metric: reduction rate

Comparison Metric – Reduction Ratio

 The higher the reduction ratio is, the more efficient our approach will be

CFD

$$RR = \frac{M - M_{CFD}}{M} \times 100\% = \left(1 - \frac{M_{CFD}}{M}\right) \times 100\%.$$

CNPE

$$RR = \left(1 - \frac{M_{CNPE}}{M}\right) \times 100\%$$

Experimental Results – Session Time

CFD

CNPE

Experimental Results – Intersection Ratio

CFD

CNPE

CFD + CNPE

The total reduction rate approximates 40%

Conclusions

- Multi-overlay environments have emerged
- Total maintenance cost is high
- Some operations are redundant
- Cooperative maintenance approach
- A general Master-Slave model
 - CFD Subscribe/Notify protocol
 - 2) CNPE Query/Response protocol
- Reduce more than 60%

Conclusions

Maintain one, Get many free

Future Work

Other operations of overlay maintenance

Master overlay selection criteria

Automatic selection mechanism

THE END CLOUDCOM 2010

A Novel Approach for Cooperative Overlay-Maintenance in Multi-Overlay Environments